Math 115
 Winter 2017 Lecture 14

Factor Completely:

$$
\begin{aligned}
& 2 x^{3}-7 x^{2}-15 x=x\left(2 x^{2}-7 x-15\right) \\
& P=-30 \\
& S=-7 \\
& \text { 1,-30 } \\
& \underbrace{2 x^{2}+3 x-10 x-15} \\
& \text { 2,15 } \\
& =x(2 x+3)-5(2 x+3) 3-10 \\
& x(2 x+3)(x-5)
\end{aligned}
$$

$$
\begin{aligned}
& 60 x^{4}-230 x^{3}+200 x^{2} \\
& =10 x^{2}\left(6 x^{2}-\frac{23 x}{4}+20\right)
\end{aligned}
$$

$$
\begin{aligned}
& (3 x-4)(2 x-5) \\
& 10 x^{2}(3 x-4)(2 x-5)
\end{aligned}
$$

$$
\begin{array}{ll}
100 x^{3}-16 x & 25 x^{2}-4 \\
=4 x\left(25 x^{2}-4\right) & (5 x)^{2}-(2)^{2} \\
=4 x(5 x+2)(5 x-2) \quad & A^{2}-B^{2} \\
& (A+B)(A-B) \\
& =(5 x+2)(5 x-2)
\end{array}
$$

$$
\begin{aligned}
& 54 x^{4} y-16 x y^{4} \\
= & 2 x y\left(27 x^{3}-8 y^{3}\right) \\
= & 2 x y(3 x-2 y)\left(9 x^{2}+6 x y+4 y^{2}\right) \quad \begin{array}{l}
27 x^{3}-8 y^{3} \\
(3 x)^{3}-(2 y)^{3} \\
A^{3}-B^{3}
\end{array} \\
= & (A-B)\left(A^{2}+A B+B^{2}\right) \\
= & (3 x-2 y)\left(9 x^{2}+6 x y+4 y^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -6 x^{2}+17 x+14 \\
& =-1(\underbrace{\left.6 x^{2}-17 x-14\right)}_{-84} \begin{array}{l}
P=-84 \\
\underbrace{6 x^{2}+4 x}_{2}-\underbrace{-21 x-14}_{-7(3 x+2)}
\end{array} \\
& \frac{-1(3 x+2)(2 x-7)}{2 x+2)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Perfect Square Trinomial } \\
& A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& x^{2}+6 x+9=(x+3)^{2} \\
& \text { verify that } 2 \cdot x \cdot 3=6 x \\
& 4 x^{2}+20 x y+25 y^{2}=(2 x+5 y)^{2} \\
& \text { verify } 2 \cdot 2 x \cdot 5 y=20 x y
\end{aligned}
$$

$$
\begin{aligned}
& 49 x^{2}+84 x+36 \\
& =(7 x+6)^{2} \\
& \text { Verify } 2 \cdot 7 x \cdot 6=84 x \\
& 64 x^{2}+48 x y+9 y^{2}=(8 x+3 y)^{2} \\
& 2 \cdot 8 x \cdot 3 y=
\end{aligned}
$$

$$
\begin{aligned}
& A^{2}-2 A B+B^{2}=(A-B)^{2} \\
& 9 x^{2}-\begin{array}{c}
60 x+100=\left(3 x^{-}-10\right)^{2} \\
2 \cdot 3 x \cdot 10
\end{array} \\
& \begin{array}{c}
4 \\
144 x^{2}-\underset{24}{24 x+1}=(12 x-1)^{2} \\
2 \cdot 12 x \cdot 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 625 x^{2}-450 x y+9 y^{2} \text { Prime } \\
& =\left(\begin{array}{ll}
25 x & 3 y)^{2} \\
\frac{2.25 x \cdot 3 y=150 x y}{2} \text { voes not } \\
64 x^{2}-\underbrace{112 x y+49 y^{2}}_{2} \\
2.8 x \cdot 7 y=(8 x-7 y)^{2}
\end{array}\right.
\end{aligned}
$$

Zero -Factor Thru:
If $A \cdot B=0$, then $A=0$ or $B=0$ (Maybe both)
Solve

$$
(x-7)(2 x+5)=0
$$

By Z.F.T.

$$
\begin{array}{rrr}
x-7=0 & \text { or } & 2 x+5=0 \\
x=7 & 2 x=-5 \\
& x=\frac{-5}{2}
\end{array} \Rightarrow\left\{\frac{-5}{2}, 7\right\}
$$

Solve $(x+8)(x-4)(4 x-3)=0$

$$
\left.\begin{array}{llll}
\text { Solve } & (x+8)(x-4) & (7 x-5) & x-4=0 \\
\text { RUS }=0 \\
\text { LHS factored }
\end{array}\right\} \quad \begin{array}{rlr}
x+8=0 & x-4=0 & x=-8
\end{array} \quad x=4 \quad x=\frac{3}{4}
$$

Solve
(1) $(2 x-7)(3 x+5)=0$

By Zero-Product Rule $2 x-7=0$ or $3 x+5=0$

$$
\begin{array}{ll}
2 x=7 & 3 x=-5 \\
x=\frac{7}{2} & x=\frac{-5}{3}
\end{array}
$$

$$
\left\{\frac{-5}{3}, \frac{7}{2}\right\}
$$

(2) $4 x(x-10)(4 x+1)=0$

By Zero-Factor Rule $4 x=0$ or $x-10=0$ or $4 x+1=0$
$x=\frac{0}{4} \quad x=10$
$4 x=-1$ $x=\frac{-1}{4}$

$$
\left\{\frac{-1}{4}, 0,10\right\}
$$

Solving Polynomial Eqns:
(1) Make Sure $R 1+S=0$
(2) Make Sure LHS is completely factored
(3) use Zero-Product Rule, and Solve each factor Solve $x^{2}-7 x=-6$

$$
\begin{aligned}
& x^{2}-7 x+6=0 \\
& (x-1)(x-6)=0
\end{aligned} \begin{array}{cc}
x-1=0 & \text { or } x-6=0 \\
x=1 & x=6 \\
\{1,6\}
\end{array}
$$

Solve

$$
\begin{aligned}
& x^{2}-4 x=5 \\
& x^{2}-4 x-5=0 \\
& (x+1)(x-5)=0
\end{aligned}
$$

by Z.F.R.

$$
x+1=0 \text { or } x-5=0
$$

$$
x=-1 \quad x=5 \quad \Rightarrow\{-1,5\}
$$

Solve $x^{2}+9=6 x \quad \rightarrow(x-3)(x-3)=0$

$$
\begin{array}{rrr}
x^{2}+9-6 x=0 \\
x^{2}-6 x+9=0 & \text { by Z.F.T. } & \{3\} \\
& x-3=0 & x=3
\end{array} \quad \begin{aligned}
& \text { Repeated. }
\end{aligned}
$$

Length and width of a rectangular carport are two consecutive integers.
The area is $30 \mathrm{~m}^{2}$.
find its dimensions.

$$
\begin{gathered}
A=30 \\
L w=30 \\
(x+1) x=30 \\
x^{2}+x=30 \\
x^{2}+x-30=0
\end{gathered} \quad[\begin{array}{cc}
x+1 \\
1,30 & \text { by } \\
2,15 & x+6)(x-5)=0 \\
3,10 & \text { z.F.T. } \\
5,6
\end{array} \underbrace{5 m \text { by } 6 m}_{5-6} \quad x=5
$$

Solve

$$
\begin{aligned}
& x^{2}=100 \quad x^{2}-100=0 \\
& x^{2}-10^{2}=0 \Rightarrow(x+10)(x-10)=0 \\
& A^{2}-B^{2} \text { by Z.F.T. } \\
& (A+B)(A-B) \quad x+10=0 \text { or } x-10=0 \\
& 4 x^{2}-5=20 \\
& \begin{array}{l}
4 x^{2}-5-20=0 \\
4 x^{2}-25=0 \\
(2 x)^{2}-(5)^{2}=0
\end{array} \\
& \begin{array}{l}
4 x^{2}-5-20=0 \\
4 x^{2}-25=0 \\
(2 x)^{2}-(5)^{2}=0
\end{array} \\
& x=-10 \quad x=10 \\
& \rightarrow \begin{array}{l}
(2 x+5)(2 x-5)=0 \\
\text { by Z.F.T. } \\
2 x+5=0 \quad 2 x-5=0 \\
x=-5 / 2 \quad x=5 / 2 \quad\left\{ \pm \frac{5}{2}\right\}
\end{array}
\end{aligned}
$$

$$
(x+3)(x+4)=20
$$

(1) foil $\dot{\varepsilon}$ simplify

$$
\begin{gathered}
x^{2}+4 x+3 x+12=20 \\
x^{2}+7 x+12=20
\end{gathered}
$$

(2) Make RHS $=0$, then factor the LHS

$$
\left.\begin{array}{c}
\text { Re RHS }=0 \text {, then 5acTor } \\
\begin{array}{c}
x^{2}+7 x+12-20=0 \\
x^{2}+7 x-8=0
\end{array} \quad \begin{array}{c}
(x+8)(x-1)=0 \\
\text { now use } Z=T . T . \\
x+8=0 \text { or } x-1=0 \\
x=-8
\end{array} x=1 \\
\{-8,1\}
\end{array}\right]
$$

Solve $(x-7)(x+1)=-16$
(1)foil ÉSimplify

$$
\begin{aligned}
& x^{2}+x-7 x-7=-16 \\
& x^{2}-6 x-7+16=0 \\
& x^{2}-6 x+9=0
\end{aligned}
$$

(2) factor LHS, use Z.F.T. $\quad(x-3)(x-3)=0$ by Z.F.T.

$$
x-3=0 \quad x=3
$$

$\{3\}$ Repeated Ans.

The sum of squares of two consecutive integers is 41 . Find all such integers.

$$
\begin{aligned}
& x \quad \varepsilon_{1} x+1 \\
& x^{2}+(x+1)^{2}=41 \quad \begin{array}{r}
\text { Solve } \\
x^{2}+(x+1)^{2}=41
\end{array} \\
& x^{2}+x-20=0 \text { o } x^{2}+(x+1)(x+1)=41
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
x^{2}+x^{2}+x+x+1=41 \\
2 x^{2}+2 x+1-41=0 \\
2 x^{2}+2 x-40=0 \\
\text { Divide by } 2
\end{array}
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& 14 x^{2}-3=21 x-3 \\
& 14 x^{2}-3-21 x+3=0 \\
& 14 x^{2}-21 x=0 \Rightarrow \begin{array}{ll}
& 2 x^{2}-3 x=0 \\
& x(2 x-3)=0 \\
\text { Divide by } 7 \quad & \text { use Z.F.T. } \\
\left\{0, \frac{3}{2}\right\} & x=0 \text { or } 2 x-3=0 \\
& x=0 \quad x=\frac{3}{2}
\end{array}
\end{aligned}
$$

Solve $3 x^{2}-2 x=9-8 x$
Make RHS $=0$

$$
\begin{array}{lc}
3 x^{2}-2 x-9+8 x=0 \\
3 x^{2}+6 x-9=0 \Rightarrow & x^{2}+2 x-3=0 \\
\text { Divide by } 3 & (x+3)(x-1)=0 \\
\text { by z.F.R. } \\
\{-3,1\} & \left.\begin{array}{l}
x+3=0, x-1=0 \\
x=-3
\end{array}\right) x=1
\end{array}
$$

Solve

$$
\begin{aligned}
& 12 x^{2}-3 x=2+2 x \\
& 12 x^{2}-3 x-2-2 x=0 \\
& 12 x^{2}-5 x-2=0 \\
& 12 x^{2}+3 x-8 x-2 \\
& P=-24 \\
& S=-5 \\
& \begin{array}{|c}
-24 \\
\begin{array}{c}
2,12 \\
3,-8 \\
4,6
\end{array}
\end{array} \\
& 3 x(4 x+1)-2(4 x+1) \\
& \left\{\frac{-1}{4}, \frac{2}{3}\right\} \\
& 4 x+1=0 \quad 3 x-2=0 \\
& 4 x=-1 \quad 3 x=2 \\
& x=\frac{-1}{4} \quad x=2 / 3
\end{aligned}
$$

Solve $15 x^{2}=2+7 x$

$$
\begin{aligned}
& 15 x^{2}-2-7 x=0
\end{aligned}
$$

Area of a rectangle is $30 \mathrm{ft}^{2}$.
The length is Aft longer than 3 times its width. 3ftbyloft
find its dimensions.

Y-Int $(0,-9)$
(1) find v-Int $(0$,
(2) find x-Int $(, 0)$

$$
\begin{aligned}
& x \text {-Int }(3 / 2,0) \dot{\varepsilon}(-3,0) \\
& y=0 \\
& 2 x^{2}+3 x-9=0
\end{aligned}
$$

BY Z.F.T.

$$
\begin{array}{cc}
2 x-3=0 & x+3=0 \\
x=\frac{3}{2} & x=-3
\end{array}
$$

Exam 3

- Monday 6:00-7:40, Come as earlyas 5:50.
- Review exam 1 ह̀ exam 2
- Know exponential rules, Long Division
- Factoring, Solving Polynomial eqn.
- Factoring Project is due.
- This Sunday \rightarrow 9:00-11:00 in the lobby of G5-Building.

find x

$$
\{5\}
$$

$$
a^{2}+b^{2}=c^{2}
$$

Pythagorean thrm by Pythagovean thrm

$$
\begin{aligned}
& \begin{array}{l}
3^{2}+4^{2}=x^{2} \\
9+16=x^{2} \\
25=x^{2}
\end{array} \quad\left[\begin{array}{c}
x^{2}=25 \\
x^{2}-25=0 \\
(x+5)(x-5)=0
\end{array}\right] \quad \text { byz.F.T. }
\end{aligned}
$$

find x.
by Pythagovean thrm

$$
\begin{aligned}
& x^{2}+8^{2}=10^{2} \\
& x^{2}+64=100 \\
& x^{2}+64-100=0 \\
& x^{2}-36=0 \\
& (x+6)(x-6)=0 \\
& \text { by Z.F.T. } \\
& \text { x-6, } x=6
\end{aligned}
$$

Find $x:$	Right Triangle Pythagorean thru $x^{2}+(x+2)^{2}=10$
$(x+8)(x-6)=0$	
by Z.F.T.	
$\rightarrow 8,6$	

x^{2}+x^{2}+2 x+2 x+4-100=0

2 x^{2}+4 x-96=0

Divide by 2

x^{2}+2 x-48=0\end{array}\right.\)

